ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Chuan Li, Jian Zhang, Chao Fang
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 45-53
Technical Paper | doi.org/10.1080/00295450.2017.1348874
Articles are hosted by Taylor and Francis Online.
In this paper, the methodology of studying the chemical forms of important fission products (FPs) in the primary circuit of a pebble-bed modular high-temperature gas-cooled reactor (HTR-PM) is given, and the chemical forms of important FPs cesium (Cs), strontium (Sr), argentum (Ag), iodine (I), and corresponding amounts are calculated under the condition of equilibrium core of HTR-PM considering the O2 impurity in the helium coolant of the primary circuit. It is shown that for the Cs element, Cs2O2 and Cs2O may undergo a phase transformation between their nongaseous state and gaseous state, respectively, and for the Sr element, the conversion from SrO2 to SrO is obvious with the increase of temperature. In contrast, the reaction between Ag and O reacts thoroughly, and AgO is very stable under different temperature conditions. There is a turning point in the chemical reaction between Cs and I with the increase of temperature, which illustrates that there exists competition between the I-Cs reaction and the O-Cs reaction. These results provide clear chemical form information of the important FPs in the primary circuit, which is significant to understanding the chemical reaction behavior of radionuclides in HTR-PM.