ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Chuan Li, Jian Zhang, Chao Fang
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 45-53
Technical Paper | doi.org/10.1080/00295450.2017.1348874
Articles are hosted by Taylor and Francis Online.
In this paper, the methodology of studying the chemical forms of important fission products (FPs) in the primary circuit of a pebble-bed modular high-temperature gas-cooled reactor (HTR-PM) is given, and the chemical forms of important FPs cesium (Cs), strontium (Sr), argentum (Ag), iodine (I), and corresponding amounts are calculated under the condition of equilibrium core of HTR-PM considering the O2 impurity in the helium coolant of the primary circuit. It is shown that for the Cs element, Cs2O2 and Cs2O may undergo a phase transformation between their nongaseous state and gaseous state, respectively, and for the Sr element, the conversion from SrO2 to SrO is obvious with the increase of temperature. In contrast, the reaction between Ag and O reacts thoroughly, and AgO is very stable under different temperature conditions. There is a turning point in the chemical reaction between Cs and I with the increase of temperature, which illustrates that there exists competition between the I-Cs reaction and the O-Cs reaction. These results provide clear chemical form information of the important FPs in the primary circuit, which is significant to understanding the chemical reaction behavior of radionuclides in HTR-PM.