ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yang Tang, Yangping Zhou, Zhiwei Zhou, Lei Shi
Nuclear Technology | Volume 200 | Number 1 | October 2017 | Pages 27-44
Technical Paper | doi.org/10.1080/00295450.2017.1352329
Articles are hosted by Taylor and Francis Online.
Different from most current commercial nuclear power plants, the High-Temperature gas-cooled Reactor Pebble-bed Module (HTR-PM) power plant consists of two reactor modules connected to a common steam turbine system that will bring a special coupling effect between the two reactor modules. An engineering simulator of the HTR-PM plant was developed by embedding the THERMIX/BLAST code into the vPower simulation platform. Two sets of nuclear steam supply systems of HTR-PM, including two reactors, two steam generators, two helium blowers, and the helium flow ducts, were simulated by two THERMIX/BLAST code modules, respectively. The entire secondary loop system was simulated using intrinsic models of the vPower simulation platform. The vPower platform connects and synchronizes the two THERMIX/BLAST modules, as well as the simulation module for the secondary loop system. The engineering simulator was applied to simulate the behavior of HTR-PM under steady-state operation, startup and shutdown processes, and accident conditions. The coupling effect during the condition conversion process and the thermal characteristics under accident conditions of HTR-PM were analyzed by the engineering simulator.