ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas E. Michener, David R. Rector, Judith M. Cuta
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 350-368
Technical Paper | doi.org/10.1080/00295450.2017.1327253
Articles are hosted by Taylor and Francis Online.
The COBRA-SFS thermal-hydraulic code has been incorporated into the Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System tool as a module devoted to spent-fuel-package thermal analysis. COBRA-SFS has been extensively validated and widely applied to thermal-hydraulic analysis of a large range of spent-fuel storage systems. Instead of recapping that long and detailed history, this paper summarizes the most significant and unique verification and validation of COBRA-SFS, which consists of comparison of code temperature predictions to experimental data obtained in the Test Area North Facility at the Idaho National Laboratory in the 1980s and early 1990s. These data were obtained as part of a program undertaken by the U.S. Department of Energy Office of Civilian Radioactive Waste Management for thermal performance testing of commercial spent-fuel storage cask designs. In total, four casks were tested, and all tests were performed with Westinghouse 15×15 pressurized water reactor spent fuel from the Surry or Turkey Point reactors. COBRA-SFS code results and experimental data comparisons are shown only for the CASTOR-V/21 and the TN-24P casks. CASTOR-V/21 was loaded with the highest decay heat load tested in this program, with individual assembly decay heat values up to 1.83 kW. This effectively bounds storage conditions currently contemplated for high-heat-load systems with test conditions reaching fuel cladding temperatures that approached and in some cases exceeded 400°C, the current regulatory limit for peak cladding temperature in dry storage. TN-24P, with a decay heat load of 20.5 kW, provides comparisons with experimental data that represent a realistic upper bound on typical dry storage initial conditions in independent spent fuel storage installations around the country. The consistency and accuracy of the COBRA-SFS temperature predictions in comparison to the measured data from these casks show that the code appropriately predicts the thermal-hydraulic and heat transfer behavior of these systems. The results presented here provide an excellent illustration of the capability of the COBRA-SFS code to correctly capture all three modes of heat transfer (thermal radiation, conduction, and convection) and the internal circulation of the backfill gas within a spent-fuel package in horizontal or vertical orientation.