ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Georgeta Radulescu, Kaushik Banerjee, Robert A. Lefebvre, L. Paul Miller, John M. Scaglione
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 299-309
Technical Paper | doi.org/10.1080/00295450.2017.1348800
Articles are hosted by Taylor and Francis Online.
The Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) methodology to perform automated containment analyses for potential transportation packages based on canister loading map information is described, and its capability is illustrated with example results. The allowable leakage rate is calculated with the procedures provided in ANSI N14.5-2014 and NUREG/CR-6487, which were adapted for containment analysis of a transportation package containing fuel assemblies with different nuclear characteristics (e.g., initial enrichment, burnup, and cooling time) and clad integrity (intact or damaged). UNF-ST&DARDS applies different source term calculation methodologies for low-burnup fuel (LBF) (i.e., <45 GWd/tonne U) assemblies and high-burnup fuel (HBF) (i.e., ≥45 GWd/tonne U) assemblies. The LBF radionuclide activities are based on actual fuel assembly burnup, initial enrichment, and cooling time. Bounding radionuclide activities based on a fuel pellet burnup value of 65 GWd/tonne U and actual fuel assembly cooling time are used for HBF assemblies. The fraction of failed fuel rods and the release fractions for the contributors to releasable source terms recommended in NUREG-1617 are used in the containment analysis regardless of fuel assembly burnup. However, UNF-ST&DARDS supports different parameter values for LBF and HBF assemblies. The containment analysis methodology for as-loaded transportation packages is presented in detail, and the UNF-ST&DARDS containment analysis capability is illustrated with results for simulated transportation packages containing spent nuclear fuel canisters in dry storage at selected sites.