ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Georgeta Radulescu, Kaushik Banerjee, Robert A. Lefebvre, L. Paul Miller, John M. Scaglione
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 276-288
Technical Paper | doi.org/10.1080/00295450.2017.1307643
Articles are hosted by Taylor and Francis Online.
The Used Nuclear Fuel Storage, Transportation and Disposal Analysis Resource and Data System (UNF-ST&DARDS) is used to perform dose rate calculations for spent nuclear fuel (SNF) transportation packages based on the actual physical and nuclear characteristics (i.e., assembly design, burnup, initial enrichment, and cooling time) of the as-loaded SNF. Nuclear fuel data, transportation package model templates, and SNF canister loading map information residing within the tool facilitate automated generation of SCALE input files for radiation source term and dose rate calculations. Transportation package specific models developed for UNF-ST&DARDS dose rate analyses are described in detail. UNF-ST&DARDS dose rate analyses were performed for over 400 SNF canisters from 16 sites in their designated transportation casks. For simplicity, representative dose rate calculation results are presented as a function of time (i.e., selected calendar years between 2020 and 2100) for 73 SNF canisters in dry storage at four sites. For these canisters, the projected maximum dose rate values at 2 m from the lateral surfaces of the vehicle under normal conditions of transport (NCT) would vary between 1.9 and 11.5 mrem/h in 2020. Five SNF canisters will exceed the regulatory dose rate limit of 10 mrem/h at 2 m in 2020, and the analyzed SNF canisters will comply with regulatory dose rate limits by 2030. An analysis of the impact on the dose rate of fuel failure and reconfiguration during transportation indicated that the maximum dose rate for hypothetical accident conditions will be unaffected, and the NCT maximum dose rate at 2 m would have a maximum increase by a factor of 1.7 for a representative pressurized water reactor package and by a factor of 2.6 for a representative boiling water reactor package relative to intact fuel. Analysis of the actual heat loading and the dose rate at 2 m from the lateral surface of the vehicle for the five SNF canisters exceeding the NCT regulatory dose rate limit of 10 mrem/h in 2020 showed that the dose rate could be more limiting with respect to regulatory requirements than the heat loading; i.e., the canister transportability date may be evaluated based on the transportation package’s external dose rate.