ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
J. B. Clarity, K. Banerjee, H. K. Liljenfeldt, W. J. Marshall
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 245-275
Technical Paper | doi.org/10.1080/00295450.2017.1361250
Articles are hosted by Taylor and Francis Online.
A novel assessment has been completed to determine the previously unquantified and uncredited criticality margin available in as-loaded commercial spent nuclear fuel (SNF) canisters. This assessment was performed as part of a broader effort to assess issues and uncertainties with storage, subsequent transportation, and final disposal of SNF canister systems. Detailed analyses crediting the burnup, initial enrichment, and postirradiation cooling time of actual SNF inventory were performed for 554 SNF canisters stored at 23 commercial reactor sites to determine realistic criticality safety margins. These detailed analyses were automated by the Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS), a comprehensive, integrated data and analysis tool. Calculated, uncredited criticality margins (Δkeff) with respect to the safety analysis results range from 0 to almost 0.30 Δkeff for normal storage and transportation cases. Calculated eigenvalues (keff) range from 0.72 to 1.11 assuming a degraded neutron absorber disposal condition, and they range from 0.94 to 1.20 assuming a degraded basket disposal condition. Calculations with NaCl present in the moderator (which is possible for certain disposal geologies) were used to demonstrate the possibility for subcriticality for degraded cases with a keff above 0.98 with freshwater. The methods used to calculate keff for the canisters analyzed in this work are discussed in detail.
The results demonstrate that, for the majority of canisters analyzed here, significant uncredited safety margin is available that could be used to compensate for uncertainties in the SNF assembly and canister internal components. These uncertainties are associated with long-term storage and subsequent transportation and disposal. Results also suggest that the inherent margins associated with how canisters are loaded could support future changes in licensing SNF storage and transportation systems to directly or indirectly credit the margins associated with actual SNF characteristics. Ongoing research continues to gather additional data to quantify uncredited safety margins for SNF canisters loaded at other nuclear reactor sites and to explore potential methods for applying this uncredited margin.