ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nicolas Shugart, Jeffrey King
Nuclear Technology | Volume 199 | Number 2 | August 2017 | Pages 129-150
Technical Paper | doi.org/10.1080/00295450.2017.1334435
Articles are hosted by Taylor and Francis Online.
SafeGuards Analysis (SGA) is a computational toolbox able to simulate different safeguards scenarios across a number of different fuel cycles and at many different scales within the MATLAB Simulink framework. SGA functions by simulating Material Balance Areas (MBAs) under safeguards materials control and accountability and allows the user to define the uncertainty parameters of the associated flow and inventory measurements. The simulated safeguard system uses the uncertain measurement estimates to calculate a mass-balance across the MBA. This mass balance is then evaluated by one of a number of different statistical tests to determine if a significant amount of material has been removed from the MBA. This paper describes the design of SGA, the results of testing each element of the toolbox, and a number of single MBA example scenarios. In all of the test cases, SGA performed as expected and produced acceptable results from the single MBA scenario.