ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Yoshihisa Ikusawa, Koji Maeda, Masato Kato, Masayoshi Uno
Nuclear Technology | Volume 199 | Number 1 | July 2017 | Pages 83-95
Technical Paper | doi.org/10.1080/00295450.2017.1314748
Articles are hosted by Taylor and Francis Online.
Based on thermal computation results obtained using an irradiation behavior analysis code, we have evaluated the effect of oxide-metal ratio on fuel restructuring from the results of postirradiation examinations for the B14 irradiation test fuel, which was a mixed oxide fuel and was irradiated in the experimental reactor Joyo. The thermal computation results showed that fuel restructuring in the stoichiometric oxide fuel was accelerated, though the fuel temperature in the stoichiometric oxide fuel was evaluated as lower than that of the hypo-stoichiometric one. We explained this behavior as follows: first, the fuel temperature decreased due to the high thermal conductivity at stoichiometry; second, the pore migration velocity increased due to the increase in vapor pressure caused by the high vapor pressure of UO3, which was derived from the high oxygen potential at stoichiometry. In addition, our results indicated that the central void diameter strongly depended on not only fuel temperature, but also vapor pressure.