ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Roberto Ponciroli, Stefano Passerini, Richard B. Vilim
Nuclear Technology | Volume 199 | Number 1 | July 2017 | Pages 16-34
Technical Paper | doi.org/10.1080/00295450.2017.1326783
Articles are hosted by Taylor and Francis Online.
Advanced reactors are often claimed to be passively safe against unprotected upset events. In common practice, these events are not considered in the context of the plant control system, i.e., the reactor is subjected to classes of unprotected upset events while the normally programmed response of the control system is assumed not to be present. However, this approach constitutes an oversimplification since, depending on the upset involving the control system, an actuator does not necessarily go in the same direction as needed for safety. In this work, dynamic simulations are performed to assess the degree to which the inherent self-regulating plant response is safe from active control system override. The simulations are meant to characterize the resilience of the plant to unprotected initiators. The initiators were represented and modeled as an actuator going to a hard limit. Consideration of failure is further limited to individual controllers as there is no cross-connect of signals between these controllers. The potential for passive safety override by the control system is then relegated to the single-input single-output controllers. The results show that when the plant control system is designed by taking into account and quantifying the impact of the plant control system on accidental scenarios there is very limited opportunity for the preprogrammed response of the control system to override passive safety protection in the event of an unprotected initiator.