ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yan Wang, Zhijian Zhang, Anqi Xu, Huazhi Zhang
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 327-341
Technical Paper | doi.org/10.1080/00295450.2017.1297174
Articles are hosted by Taylor and Francis Online.
Quantitative risk values for nuclear power plants (NPPs) can be obtained by conducting a probabilistic safety assessment (PSA). However, people cannot judge the risk level without comparing the risk values from PSA with the standards of acceptable risk in society. Acceptable risk standards are affected by many factors, and those factors are preferentially considered in specified applications. There are many methods used to establish acceptable risk, and a comparative method is easily understood and accepted by the public. In the United States, both qualitative safety goals and quantitative health objectives (QHOs) for the current generation of light water reactors are established by a comparative method and are described in the Safety Goals Policy Statement published by the U.S. Nuclear Regulatory Commission. The evaluations of Level 1 PSA or Level 2 PSA are enough for most regulatory decisions and engineering practices.
In order to use PSA as a useful tool for regulation, establishing surrogate safety goals based on QHOs is necessary. But, there is no clear derivation process. First, this paper introduces the process of how to derive QHOs from qualitative safety goals and a model of quantitative health risk. Then, models using core damage frequency (CDF) and large early release frequency (LERF) based on the QHOs are introduced. The situations of nuclear power for each country—the number of plants, the types of reactors, the weather conditions, the population distribution, and the off-site emergency response plan—are different for each country. This paper considers two representative situations. The first situation is that a society has only a single NPP. The maximum consequence method is used to determine the surrogate safety goals for this situation. The second situation is that a society has multiple types of NPPs and the off-site environments of the plants are different from each other. The statistical tolerance intervals method is used to determine the surrogate safety goals for this situation. Data of individual early fatality and cancer fatality risk in China from 2004 to 2013 are collected and analyzed, and then, Chinese, U.S., Korean, and Japanese QHOs are compared. Chinese QHOs and some data from the reference are used to establish surrogate safety goals for the two situations, which are compared with existing surrogate safety goals CDF = 1E-04 per reactor and LERF = 1E-05/reactor-year.