ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
After decades, Hanford’s WTP begins vitrifying tank waste
The Department of Energy’s Office of Environmental Management and its contractor Bechtel announced on October 15 the start of nuclear vitrification operations at the Waste Treatment and Immobilization Plant (WTP), also known as the Vit Plant, at the Hanford Site in Washington state.
Carlos Ruiz, Carlos Rinaldi
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 319-326
Technical Paper | doi.org/10.1080/00295450.2017.1297170
Articles are hosted by Taylor and Francis Online.
This work presents the effects that produce the change in entropy during separation processes; it takes into account the dilution of UF6 in a carrier gas (H2, He, N2, Ar, Xe, SF6, etc.). Comparisons were made between two technologies: one a mature process currently used, i.e., centrifugation (process A), and the other in development, i.e., processes based on a laser [Condensation Repression Isotope Separation by Laser (CRISLA), Molecular Laser Isotope Separation (MLIS), etc.] (process B). The calculations were made using the principles of mix thermodynamics. The results indicate that entropy expenditure is two orders of magnitude higher than that necessary to separate isotopes when the amount (of isotopes) is the same in both process A and process B.