ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Carlos Ruiz, Carlos Rinaldi
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 319-326
Technical Paper | doi.org/10.1080/00295450.2017.1297170
Articles are hosted by Taylor and Francis Online.
This work presents the effects that produce the change in entropy during separation processes; it takes into account the dilution of UF6 in a carrier gas (H2, He, N2, Ar, Xe, SF6, etc.). Comparisons were made between two technologies: one a mature process currently used, i.e., centrifugation (process A), and the other in development, i.e., processes based on a laser [Condensation Repression Isotope Separation by Laser (CRISLA), Molecular Laser Isotope Separation (MLIS), etc.] (process B). The calculations were made using the principles of mix thermodynamics. The results indicate that entropy expenditure is two orders of magnitude higher than that necessary to separate isotopes when the amount (of isotopes) is the same in both process A and process B.