ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Amol Patil, Shoaib Usman
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 249-256
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT09-A4090
Articles are hosted by Taylor and Francis Online.
This paper describes the finding of an experimental study to measure the detector paralysis factor and the use of this parameter in conjunction with detector dead time to better model detector dead-time response. The idealized one-parameter models, the paralyzable and nonparalyzable models, are inadequate to properly model the dead-time response of any real detector system. To address this deficiency, a more realistic two-parameter model is proposed that incorporates the paralysis factor of the detector in addition to the dead time. The revised two-parameter-based model is an extension of Lee and Gardner's two-dead-time model. A simple scheme is proposed to deduce these parameters from the recorded data based on the rise and drop of count rates from a decaying source. Measurements were made using 56Mn and 52V. The data collected in this study show that a high-purity germanium (HPGe) detector has a paralysis factor of ~50 to 77% and a dead time of 6 to 10 s. Using the data collected by Lee and Gardner, the paralysis factor for a Geiger-Mueller (GM) counter is estimated to be ~5%. These results are consistent with the approximating assumption that GM counters are nonparalyzing and HPGe detectors are paralyzing.