ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Jun Hwan Kim, Byoung Kwon Choi, Yong Hwan Jeong, Seung Jin Oh
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 241-248
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT09-A4089
Articles are hosted by Taylor and Francis Online.
Studies were conducted to investigate the effect of the intermediate cooling process on the thermal shock behavior of Zircaloy-4 fuel cladding under a simulated loss-of-coolant accident condition and to analyze the related mechanical and microstructural properties. The Zircaloy-4 specimen was oxidized at the desired temperature and time, then various cooling processes were applied such as the direct water quench, the intermediate cooling at 700°C for 200 and 2000 s, and the successive cooling from 950 to 700°C. The results showed that the direct water quenching without any intermediate cooling process reduced the cladding ductility in that it reduced the minimum equivalent cladding reacted from 20 to near 17%. Ring compression ductility decreased, and the minimum thickness of the prior-beta layer thickness that causes brittle failure increased from 0.3 to 0.4 mm in the case of the direct water quench condition. As the cooling rate increased, the size of the plate inside the prior-beta phase decreased so that it induced an increase in the residual dislocation density to result in a decrease of the cladding ductility. Additional oxidation effect during a slow cooling below 950°C had little influence on the cladding behavior.