ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bernhard Kienzler, Peter Vejmelka, Jürgen Römer, Dieter Schild, Mats Jansson
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 223-240
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT09-A4088
Articles are hosted by Taylor and Francis Online.
Within the scope of a cooperation between Svensk Kärnbränslehantering AB and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, a series of actinide migration experiments were performed both in the laboratory and at the Äspö Hard Rock Laboratory in Sweden. The objectives of these experiments were to quantify the sorption of different actinide elements in single fractures of a granite host rock and to investigate the sorption mechanisms. To guarantee the most realistic conditions - as close to nature as possible - in situ experiments were performed in the Chemlab 2 borehole probe. These migration experiments were complemented by laboratory sorption and migration studies. The latter included batch experiments with flat chips of natural material extracted from fracture surfaces to identify the mineral phases relevant to radionuclide sorption by means of autoradiography. Scanning electron microscopy analyses provided information on the composition of sorption-relevant phases and X-ray photoelectron spectroscopy of Np, Tc, and Fe distribution revealed the redox states of these elements. Important mineral phases retaining all actinides and Tc were Fe-bearing phases.From the migration experiments, elution curves of the inert tracer (HTO), Np(V), U(VI), and to a small extent of Tc(VII) were obtained. Americium(III) and plutonium(IV) were not eluted. The mechanisms influencing the migration of the elements Np, U, and Tc depended on redox reactions. It was shown by various independent methods that Np(V) was reduced to the tetravalent state on the fracture surfaces, thus resulting in a pronounced dependence of the recovery on the residence time. Technetium was also retained in the tetravalent state. Elution of natural uranium from the granite drill cores was significant and is discussed in detail.