ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Leah Spradley, Mark Abkowitz, James H. Clarke
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 209-222
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT09-A4087
Articles are hosted by Taylor and Francis Online.
This paper describes the development and use of an integrated model to explore the impact of design parameters and operational decisions on storage and transportation aspects of the preclosure activity period for the potential repository at Yucca Mountain (YM), Nevada. The model provides an opportunity to perform analyses of various YM preclosure "scenarios." Storage and transportation aspects of the preclosure system are evaluated with the goal of identifying important design parameters and understanding system interactions, thereby providing a tool to recognize trade-offs and dependencies between storage demands at the waste generation sites and the repository.This application of the model explores changes in assumptions regarding the following parameters: (a) year the transportation, aging, and disposal (TAD) canister becomes available; (b) year that YM opens; (c) thermal limit for emplacement; (d) thermal limit for transportation; and (e) utility strategies for selecting assemblies for dry storage loading.The response variables measured are (a) dry storage containers loaded because of lack of capacity in the spent nuclear fuel pools, (b) TAD canisters that could potentially be loaded before YM opens (assuming utilities begin using the TAD canister as soon as it is commercially available), (c) pools from which shipments to YM originate each year, (d) years aboveground aging is required at YM, and (e) containers in the aging facility at YM each year.Results indicate that allowing utilities to trade allocations, prioritizing the trading based on least remaining capacity in the spent nuclear fuel pools, could reduce dry storage demands at the utility sites, decrease the number of pools making shipments each year, and increase the efficiency of the transportation system. This type of prioritization for allocations can provide these improvements without adversely impacting the required aboveground aging at YM in the case that younger fuel is sent first. Consequently, there may be incentive for utilities to negotiate the trading of allocations if they wish to reduce their expected dry storage demands after shipments commence to YM.