ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Alexander Agung, Danny Lathouwers, Tim H. J. J. van der Hagen, Hugo van Dam, Christopher C. Pain
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 133-144
Technical Paper | Fission Reactors | doi.org/10.13182/NT09-A4081
Articles are hosted by Taylor and Francis Online.
A new design of a fluidized bed has been proposed and it has been shown that under steady condition the reactor is able to produce power up to 120 MW. To study the behavior of the reactor under transient conditions as well as its stability, a model describing the coupling of neutronics, thermal hydraulics, and fluidization is applied. The objective of this study is to comprehend whether the reactor is stable under its operational range. Further, knowledge of the extent of operational parameters under large perturbations is necessary for a safe operation.The stability of the system is investigated by numerical means and is performed by linearizing and perturbing the system around its equilibrium points to form Jacobian matrices. The resulting matrices are further used to obtain the eigenvalues of the system. The system is investigated under variation of mass flow rate, and it is found that within the operational range the eigenvalues are located in the negative part of the phase plane, implying linear stability. Further, the calculated decay ratios indicate a strongly damped system.Simulations of transient conditions are performed, namely, a step change in coolant flow rate and inlet temperature, representing situations that might occur in real operations of the reactor. The coolant flow rate is varied by ±1 kg/s and the inlet gas temperature is varied by ±10 K from their steady state of 33 kg/s and 543 K, respectively. Another transient is also simulated, i.e., a transient related to noise resulting from stochastic movements of the fuel particles. For this purpose, an additional term is included in the reactivity feedback and modeled as a time-dependent external reactivity. Magnitude of the variance for this simulation is obtained from the preceding static calculations. These simulations show that the total power of the reactor may fluctuate and reach high values. However, the fuel temperature, thanks to passive reactivity feedback, is well below safety limits at all times.