ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Hirokazu Ohta, Takanari Ogata, Takeshi Yokoo, Michel Ougier, Jean-Paul Glatz, Bruno Fontaine, Laurent Breton
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 96-110
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT09-A4063
Articles are hosted by Taylor and Francis Online.
Fast reactor metal fuels containing minor actinides (MAs) Np, Am, and Cm and/or rare earths (REs) have been irradiated in the fast reactor PHÉNIX to examine the effects of adding those elements on metal fuel irradiation behavior. In this experiment, two MA-containing metal fuel pins, in which the test alloys U-19Pu-10Zr-2MA-2RE and U-19Pu-10Zr-5MA/U-19Pu-10Zr-5MA-5RE (wt%) were loaded into part of a standard U-19Pu-10Zr alloy fuel stack, and a reference fuel pin of U-19Pu-10Zr alloy without MAs or REs was set in an irradiation capsule. Two other capsules with this same configuration are also irradiated. Postirradiation examinations are conducted at ~2.5, ~7, and ~11 at.% burnup. For the low-burnup fuel pins, nondestructive tests after irradiation have been performed, and the integrity of the pins was confirmed. The irradiation behavior of MA-containing metal fuels up to 2.5 at.% burnup was analyzed using the ALFUS code. The calculation results, such as the axial swelling distribution of a fuel slug or the extrusion behavior of bond sodium to the gas plenum, are consistent with the measurement data regardless of the addition of MAs and REs to the U-Pu-Zr alloy fuels. This observation result indicates that the macroscopic irradiation behavior of U-Pu-Zr fuels containing MAs and REs of 5 wt% or less is similar to that of U-Pu-Zr fuels up to ~2.5 at.% burnup.