ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Anil Kumar Sharma, Sanjay Kumar Das, J. Harvey
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 43-52
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4061
Articles are hosted by Taylor and Francis Online.
In the Prototype Fast Breeder Reactor, a core catcher is provided as an in-vessel core debris retention device to collect, support, and maintain in subcritical configuration the relocated core debris generated from fuel melting as a consequence of a severe accident scenario. It acts as a barrier to prevent settling of debris onto the main vessel and helps to maintain the main vessel temperature within acceptable creep range. In the Safety Engineering Division of the Indira Gandhi Center for Atomic Research, model experiments are carried out in water using a geometrically similar model to understand natural convective heat transfer and fluid flow in and around the core catcher below the grid plate. Influences of cylindrical and annular central openings (chimney) through the core catcher assembly are investigated to assess their relative thermal performances. Resistive heating elements are used as heat source to simulate debris decay heat on the core catcher. Series of experiments were carried out with both configurations. Temperatures were monitored at critical positions and compared with numerical evaluation. Flow fields and isotherms are analyzed with a computational model to understand the fluid flow and heat transfer characteristics inside the cavity along with experimental data for specified steady-state temperatures on the heat source plate. Numerical results are found to be in good agreement with those obtained from the experiments. The combined efforts of numerical and experimental work conclude that core catcher assembly with annular chimney is better in terms of natural convection heat removal capability.