ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Ray S. Booth
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 217-227
Technical Paper | doi.org/10.1080/00295450.2017.1299494
Articles are hosted by Taylor and Francis Online.
Functionals derived from the finite Laplace transforms of time moments of experimental data are used to fit these data to exponential functions. The functionals provide linear relationships for individually determining parameter values successively. This new and unique fitting method is first derived and then applied to data containing up to four exponentials to demonstrate its capabilities. Advantages of this fitting procedure include the following. (1) Parameters of the fit can be determined from the data region where they are most important by a wide verity of methods, including conventional ones. (2) Fitting algorithms are available that are simple to program; use conventional “stripping techniques”; are quite robust; and have been tested for a wide range in the number of data points, statistical errors, data ranges, and parameter values. (3) Fitting algorithms are included that use the conventional correlation coefficient of two expressions to fit data with even or uneven time intervals. (4) Decay constants and their associated magnitudes are determined separately and independently from different functionals. (5) Each iteration of the fit requires relatively few computations, usually only selected integrals, which can be completed quite rapidly. (6) Parameter errors can be estimated by conventional techniques.