ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ray S. Booth
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 217-227
Technical Paper | doi.org/10.1080/00295450.2017.1299494
Articles are hosted by Taylor and Francis Online.
Functionals derived from the finite Laplace transforms of time moments of experimental data are used to fit these data to exponential functions. The functionals provide linear relationships for individually determining parameter values successively. This new and unique fitting method is first derived and then applied to data containing up to four exponentials to demonstrate its capabilities. Advantages of this fitting procedure include the following. (1) Parameters of the fit can be determined from the data region where they are most important by a wide verity of methods, including conventional ones. (2) Fitting algorithms are available that are simple to program; use conventional “stripping techniques”; are quite robust; and have been tested for a wide range in the number of data points, statistical errors, data ranges, and parameter values. (3) Fitting algorithms are included that use the conventional correlation coefficient of two expressions to fit data with even or uneven time intervals. (4) Decay constants and their associated magnitudes are determined separately and independently from different functionals. (5) Each iteration of the fit requires relatively few computations, usually only selected integrals, which can be completed quite rapidly. (6) Parameter errors can be estimated by conventional techniques.