ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Gilles J. Youinou
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 202-216
Technical Paper | doi.org/10.1080/00295450.2017.1305191
Articles are hosted by Taylor and Francis Online.
This paper presents the results of a neutronics analysis related to the homogeneous recycling of different mixtures of transuranic elements (transuranics) (TRU) in pressurized water reactors (PWRs) loaded with mixed oxide (MOX) fuel using enriched uranium instead of depleted uranium (UenrO2-TRUO2, i.e., MOX-EU). It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely, the use of reprocessed uranium. From a neutronics point of view, it is possible to multirecycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one-third and two-thirds of the fleet. Recycling neptunium and americium with plutonium significantly decreases the decay heat of the waste stream between 100 to 1000 years compared to that of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235U, and recycling it makes a major difference in the natural uranium needs. For example, at equilibrium, a PWR fleet recycling its plutonium, neptunium, and americium in MOX-EU needs 28% more natural uranium than a reference UO2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19% less if the reprocessed uranium is recycled back in the reactors, i.e., a 47% difference. Reenriching the reprocessed uranium is not necessary.