ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ruixian Fang, Dan G. Cacuci, Madalina C. Badea
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 132-192
Technical Paper | doi.org/10.1080/00295450.2017.1294430
Articles are hosted by Taylor and Francis Online.
Based on the adjoint sensitivity models for the saturated case of the counter-flow cooling tower developed in the accompanying Part I, this work computed and analyzed the sensitivities, with respect to all of the 52 model parameters, of the following responses (i.e., model outputs of interest): the outlet air temperature, outlet water temperature, outlet water mass flow rate, and outlet air relative humidity. The sensitivity results indicate that, in general, all these response of interest are mostly sensitive to the boundary-related parameters (e.g., Ta,in, Tdb, Tw,in, Tdp, mw,in, and ωin) and also somewhat sensitive to those parameters (e.g., a0, a1, a1f, a0,cpa, a1,dav, kair, and fht) that directly relate to the heat and mass transfer terms in the cooling tower model. The rankings of these parameters depend on the respective model responses. With the sensitivities known, the propagation of the uncertainties in the model parameters to the uncertainties in the model outputs are readily obtained. The uncertainties associated with the model outputs were reduced by applying the “predictive modeling for coupled multiphysics systems” (PM_CMPS) methodology. For a typical case studied in this work, the uncertainties associated with the model outputs of the outlet air temperature, outlet water temperature, and outlet air relative humidity, are reduced by 22%, 38%, and 68%, respectively. Moreover, the PM_CMPS methodology also generated optimal best-estimate nominal values for the model parameters and model responses. It also improved (i.e., reduced) the uncertainties associated with model parameters through the process of model calibration, as shown in the paper. The results presented in this work demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate) for which no measurements are available. These improvements stem from the global characteristics of the PM_CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.