ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dan G. Cacuci, Ruixian Fang
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 85-131
Technical Paper | doi.org/10.1080/00295450.2017.1294429
Articles are hosted by Taylor and Francis Online.
For counter-flow mechanical draft cooling towers, the air in the fill can reach the point of saturation before leaving the fill section. The heat and mass transfer to the saturated air by evaporative cooling inside the fill are modeled with some assumptions and with over 50 parameters for boundary conditions, cooling tower geometries, heat and mass transfer correlations, water and air thermal properties, etc. Because of the parameter uncertainties and modeling assumptions, the accuracy and reliability of the cooling tower model need to be evaluated by quantifying the uncertainties associated with the model output. First, sensitivities of the model output with respect to all the model parameters need to be analyzed. Based on the cooling tower model, this work developed adjoint sensitivity models for the saturated case to compute efficiently and exactly the sensitivities of the model responses to all model parameters by applying the general adjoint sensitivity analysis methodology for nonlinear systems. The solution of the adjoint sensitivity models are independently verified. With the sensitivities known, the model parameters can be ranked in their importance for contributing to response uncertainties. The propagation of the uncertainties in the model parameters to the uncertainties in the model outputs can be evaluated. By further applying the predictive modeling for coupled multiphysics systems methodology, the cooling tower model for the saturated case can be improved by reducing the model prediction uncertainties through assimilation of experimental measurements and calibration of model parameters.