ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Dong Hun Lee, Dong-Ha Lee, Jae Jun Jeong, Kyung Doo Kim
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 79-84
Technical Note | doi.org/10.1080/00295450.2017.1287503
Articles are hosted by Taylor and Francis Online.
Frictional pressure drop (also called wall drag) for a two-phase flow has been investigated for several decades. However, the two-phase frictional pressure drop models in the state-of-the-art thermal-hydraulic system codes are significantly different from each other, especially in the way to partition the wall friction force of liquid and vapor phases in the two-fluid momentum equations. This may lead to unphysical results in some flow conditions.
In this technical note, the two-phase wall frictional pressure drop models in the RELAP5/MOD3, TRACE V5, and SPACE codes are discussed in terms of the wall friction partition into the liquid and vapor momentum equations. To show the effect of different partition methods in the three codes, we simulated air-water bubbly flows in a horizontal pipe. The results of the calculations show that the partition method has a direct effect on the relative velocity of the two phases, and it may lead to unphysical behaviors of dispersed bubbles and droplets. It is strongly recommended to revisit the two-fluid formulation and the partition method of two-phase wall drag in the state-of-the-art system codes.