ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dong Hun Lee, Dong-Ha Lee, Jae Jun Jeong, Kyung Doo Kim
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 79-84
Technical Note | doi.org/10.1080/00295450.2017.1287503
Articles are hosted by Taylor and Francis Online.
Frictional pressure drop (also called wall drag) for a two-phase flow has been investigated for several decades. However, the two-phase frictional pressure drop models in the state-of-the-art thermal-hydraulic system codes are significantly different from each other, especially in the way to partition the wall friction force of liquid and vapor phases in the two-fluid momentum equations. This may lead to unphysical results in some flow conditions.
In this technical note, the two-phase wall frictional pressure drop models in the RELAP5/MOD3, TRACE V5, and SPACE codes are discussed in terms of the wall friction partition into the liquid and vapor momentum equations. To show the effect of different partition methods in the three codes, we simulated air-water bubbly flows in a horizontal pipe. The results of the calculations show that the partition method has a direct effect on the relative velocity of the two phases, and it may lead to unphysical behaviors of dispersed bubbles and droplets. It is strongly recommended to revisit the two-fluid formulation and the partition method of two-phase wall drag in the state-of-the-art system codes.