ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Xiaonan Liu, Yi Ding, Xirui Lu
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 64-69
Technical Paper | doi.org/10.1080/00295450.2017.1292810
Articles are hosted by Taylor and Francis Online.
In this work, the immobilization of simulated radionuclide 90Sr by fly ash-slag-metakaolin–based geopolymer was investigated. It was found that the thermal stability (high-temperature and freeze-thaw resistance) of the geopolymer waste forms were better than that of cement. The geopolymer waste forms can acquire a compressive strength up to 10 MPa after 2 h calcination at 1000°C. Furthermore, the leaching tests revealed that the fly ash-slag-metakaolin–based geopolymer waste forms had lower cumulative fraction leaching rates of 90Sr than that of cement. These results gave encouragement for the idea that the fly ash-slag-metakaolin–based geopolymers could be used as low cost and high efficiency host materials for the immobilization of radioactive wastes.