ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Daniel M. Wachs, Dennis D. Keiser, Douglas L. Porter, Naoyuki Kisohara
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 465-473
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT08-A4038
Articles are hosted by Taylor and Francis Online.
After 30 yr of operation, the Experimental Breeder Reactor II (EBR-II) Superheater 710 at Argonne National Laboratory-West (now Idaho National Laboratory) was decommissioned. As part of its postservice examination, four duplex tube sections were removed and Charpy impact testing was performed to characterize the crack-arresting ability of nickel-bonded tube interfaces. A scanning electron microscopy (SEM) examination was also performed to characterize and identify changes in bond material microstructure. From room temperature to 400°C, all samples demonstrated ductility and crack-stopping ability similar to that exhibited by beginning-of-life samples. However, at a low temperature (-50°C), samples removed from the lower region of the superheater (near the sodium inlet) failed while those from the upper region (near the sodium outlet) did not. SEM analysis revealed that all the tube-tube interfaces showed evidence of iron diffusion into the nickel braze, which resulted in the formation of a multiphase diffusion structure. Yet, significant void formation was only observed in the bond layer of the tubes removed from the lower region. This may be due to a change in the crystal microstructure of one of the phases within the bond layer that occurs in the 350 to 450°C temperature range, which results in a lower density and the formation of porosity. Apparently, only the samples from the higher-temperature region were exposed to this transition temperature, and the resulting large voids that developed acted as stress concentrators that led to low-temperature embrittlement and failure of the Charpy impact specimens.