ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Chenglong Wang, Kaichao Sun, Lin-wen Hu, Dalin Zhang, Wenxi Tian, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 1-16
Technical Paper | doi.org/10.1080/00295450.2017.1294011
Articles are hosted by Taylor and Francis Online.
A transportable fluoride-salt-cooled high-temperature reactor (TFHR) design with 20-MW(thermal) rated power and 18-month fuel cycle is proposed for off-grid applications. One of the design goals of the compact reactor core is potential transport by truck, rail, or air. Full-core thermal-hydraulic analyses and improvements using three-dimensional computational fluid dynamics (CFD) were performed previously to demonstrate the feasibility of a TFHR design at a nominal power of 20 MW(thermal). In this paper, the best-estimate system code Reactor Excursion Leak Analysis Program (RELAP5-3D) is adopted to study the transient behavior of this TFHR design and the safety characteristics of the primary loop system during accident conditions. The modeling results of the steady state were verified using CFD results with consideration of radial heat conduction between heat transfer unit cells. Four most challenging accidents of anticipated transient without scram were analyzed, as well as parametric studies of some key factors. These accidents include unprotected reactivity insertion accident (URIA), unprotected loss of heat sink (ULOHS), unprotected loss of flow (ULOF), and a combination accident of ULOF and ULOHS. The results indicate that transient temperature limits are not exceeded during the most severe accidents. They indicate satisfactory transient performance of the TFHR design. The transient temperature limit of structure material Hastelloy N, based on embrittlement phenomena, poses the most limiting constraint due to the small temperature margin of about 20 K in the accident combination of ULOF and ULOHS. Overall, TFHR is a sound reactor design from a thermal-hydraulic viewpoint.