ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chenglong Wang, Kaichao Sun, Lin-wen Hu, Dalin Zhang, Wenxi Tian, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 1-16
Technical Paper | doi.org/10.1080/00295450.2017.1294011
Articles are hosted by Taylor and Francis Online.
A transportable fluoride-salt-cooled high-temperature reactor (TFHR) design with 20-MW(thermal) rated power and 18-month fuel cycle is proposed for off-grid applications. One of the design goals of the compact reactor core is potential transport by truck, rail, or air. Full-core thermal-hydraulic analyses and improvements using three-dimensional computational fluid dynamics (CFD) were performed previously to demonstrate the feasibility of a TFHR design at a nominal power of 20 MW(thermal). In this paper, the best-estimate system code Reactor Excursion Leak Analysis Program (RELAP5-3D) is adopted to study the transient behavior of this TFHR design and the safety characteristics of the primary loop system during accident conditions. The modeling results of the steady state were verified using CFD results with consideration of radial heat conduction between heat transfer unit cells. Four most challenging accidents of anticipated transient without scram were analyzed, as well as parametric studies of some key factors. These accidents include unprotected reactivity insertion accident (URIA), unprotected loss of heat sink (ULOHS), unprotected loss of flow (ULOF), and a combination accident of ULOF and ULOHS. The results indicate that transient temperature limits are not exceeded during the most severe accidents. They indicate satisfactory transient performance of the TFHR design. The transient temperature limit of structure material Hastelloy N, based on embrittlement phenomena, poses the most limiting constraint due to the small temperature margin of about 20 K in the accident combination of ULOF and ULOHS. Overall, TFHR is a sound reactor design from a thermal-hydraulic viewpoint.