ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. A. Borrelli, Joonhong Ahn
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 442-464
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT08-A4037
Articles are hosted by Taylor and Francis Online.
A scoping study is presented in order to investigate the potential of bentonite extrusion on radionuclide transport in a water-saturated planar fracture. A coupled mathematical model for an abstracted case describing the mass conservation of radionuclides and bentonite extrusion into the fracture is established to observe the mass transport phenomena due to bentonite extrusion in the fracture domain. Results of numerical simulations are then analyzed in order to interpret the potential importance of extrusion in the near-field rock on the overall performance of the engineered barrier system (EBS). The mathematical model developed in this study for radionuclide migration incorporates spatial and temporal changes in porosity due to movement of bentonite particles. Finite element solutions have been derived for the porosity and for the radionuclide concentration.With a sufficiently strong sorption, the radionuclide is observed to be contained within the region of bentonite extrusion, indicating that radionuclides would be retained within the extrusion region even if the waste canister fails early while bentonite is extruding in fractures. Such results imply the potential of the extrusion region to enhance performance in the EBS and warrant more rigorous modeling studies of this domain.