ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Daniel W. Hudson, Mohammad Modarres
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 227-247
Technical Paper | doi.org/10.1080/00295450.2016.1273714
Articles are hosted by Taylor and Francis Online.
In 1986 the U.S. Nuclear Regulatory Commission (USNRC) implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question, “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with average individual early fatality and latent cancer fatality risk results computed from nuclear power plant (NPP) probabilistic risk assessments (PRAs). Comparisons of PRA results to the QHOs or other subsidiary numerical objectives are used to determine whether proposed regulatory actions should be rejected based on potential safety benefit relative to the level of residual risk to the public, before performing detailed cost-benefit analyses to determine whether they could be justified on their net value basis. Lessons learned from recent operational experience— including the 2011 Fukushima accident—indicate that concurrent accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet, risk contributions from such scenarios are excluded by policy from safety goal evaluations for the nearly 60% of the U.S. NPP sites that include multiple units. The objectives of this paper are to (1) present an approach for estimating multiple unit risk metrics for comparison with the safety goal QHOs using accident scenarios from the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project; and (2) using this approach, evaluate the effects of including risk contributions from concurrent multiunit accidents in safety goal evaluations. The approach is demonstrated using a two-unit case study involving two representative NPP sites that are each comprised of two co-located operating reactor units. This paper (1) summarizes results and insights obtained from the two-unit case study; (2) describes additional considerations for applying methods to sites comprised of two or more units, including other major radiological sources; and (3) identifies potential areas for further research.