ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Brian L. Smith, Sergey V. Shepel
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 385-409
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A4034
Articles are hosted by Taylor and Francis Online.
The paper addresses the heat transfer problems associated with a possible leakage of hot (>250°C) lead-bismuth eutectic (LBE) from the MEGAPIE (Megawatt Pilot Target Experiment) spallation source target and whether the double-walled outer safety vessel would be able to contain the accident without serious damage occurring to the facility. Issues addressed are (a) determining the initial impact pressure of the LBE on the inner shell of the safety container, which could result in the gap between the shells being closed, interrupting the flow of D2O coolant; (b) the time taken for the LBE leak to be detected and, hence, activation of the beam trip control; and (c) heat transfer from the hot LBE to the D2O circulating between the safety container walls, which could induce bulk boiling and subsequent pressurization of the circuit. Steps in the model development are described, which include, in particular, numerical tracking of the LBE interface using a level-set method, and the construction of a computer program to calculate the thermal hydraulics of the circulating D2O, including the effects of nucleate boiling on the hot surface, the other side of which is in contact with the leaking LBE. Results of the simulation show that pressures generated by the impact of the jet of LBE on the safety window do not threaten its structural integrity; the time to trigger the leak detection equipment is ~10 ms; and bulk boiling within the D2O circuit is avoided, even if there is a delay of 1 s in actually tripping the beam. Estimates of the margins of safety to bulk boiling are given for the current MEGAPIE and possible future, upgraded liquid-metal targets of similar construction.