ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Brian L. Smith, Sergey V. Shepel
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 385-409
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A4034
Articles are hosted by Taylor and Francis Online.
The paper addresses the heat transfer problems associated with a possible leakage of hot (>250°C) lead-bismuth eutectic (LBE) from the MEGAPIE (Megawatt Pilot Target Experiment) spallation source target and whether the double-walled outer safety vessel would be able to contain the accident without serious damage occurring to the facility. Issues addressed are (a) determining the initial impact pressure of the LBE on the inner shell of the safety container, which could result in the gap between the shells being closed, interrupting the flow of D2O coolant; (b) the time taken for the LBE leak to be detected and, hence, activation of the beam trip control; and (c) heat transfer from the hot LBE to the D2O circulating between the safety container walls, which could induce bulk boiling and subsequent pressurization of the circuit. Steps in the model development are described, which include, in particular, numerical tracking of the LBE interface using a level-set method, and the construction of a computer program to calculate the thermal hydraulics of the circulating D2O, including the effects of nucleate boiling on the hot surface, the other side of which is in contact with the leaking LBE. Results of the simulation show that pressures generated by the impact of the jet of LBE on the safety window do not threaten its structural integrity; the time to trigger the leak detection equipment is ~10 ms; and bulk boiling within the D2O circuit is avoided, even if there is a delay of 1 s in actually tripping the beam. Estimates of the margins of safety to bulk boiling are given for the current MEGAPIE and possible future, upgraded liquid-metal targets of similar construction.