ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yang-Hyun Koo, Byung-Ho Lee, Jae-Yong Oh, Kun-Woo Song
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 337-347
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A4031
Articles are hosted by Taylor and Francis Online.
Based on the high-burnup fuel data available in open literature, a conservative width of high-burnup structure (HBS) in light water reactor UO2 fuel, which can be used for fuel performance and accident analysis or assessment of spent fuel under geological disposal conditions, is proposed as a function of pellet average burnup. For pellet average burnup of 30 to 60 GWd/t U, where the HBS generally increases with burnup because of the accumulation of irradiation damage, a conservative HBS width is given by wHBS = 13.3 (buavg - 30), where wHBS is the HBS width in m and buavg is the pellet average burnup in GWd/t U. For pellet average burnup of 60 to 75 GWd/t U, where microstructural damage caused by irradiation is partly annealed, a conservative HBS width is expressed by wHBS = 2.02 exp(buavg /11.35). In the case of pellet average burnup above 75 GWd/t U up to at least 100 GWd/t U, the HBS width does not exceed some limiting value of 1.5 mm because high temperature in the central region of the fuel pellet has caused an extensive annealing of irradiation damage. In addition, because of significant fission gas release during irradiation up to high burnup, HBS formation might not have expanded to the pellet region whose temperature was lower than the threshold one. Therefore, for this burnup range, a conservative HBS width is given as wHBS = 1500 m.