ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Noritoshi Minami, Toshiaki Chikusa, Michio Murase
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 265-277
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A4025
Articles are hosted by Taylor and Francis Online.
Different flow patterns of steam forward flow and nitrogen reverse flow in U-tubes were observed in the reflux condensation experiments using the Bethsy facility with 34 U-tubes. In this study, the behavior was calculated using RELAP5/MOD3.2 with two and three flow channels of U-tubes. By the modification of the weighting factor for the calculation of friction coefficients, the nitrogen reverse flow was successfully calculated. In the calculations changing the flow area ratio of two flow channels, the number of active U-tubes with steam forward flow was predicted using the assumption that flow was most stable in the case with the maximum nitrogen recirculation flow rate, and it agreed rather well with the observed number of active U-tubes (19 to 24 U-tubes) within the difference of 4 U-tubes. In the calculations with three flow channels, without the assumption, the average of the ratios of active U-tubes in several calculations (four cases in this study) with different flow area ratios of the three flow channels gave good prediction of the ratio of active U-tubes. The results indicate the validity of the assumption that the flow with the maximum nitrogen recirculation flow rate may be the most stable and appear most probably among different numbers of active U-tubes.