ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
C. Mun, L. Cantrel, C. Madic
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 245-254
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4023
Articles are hosted by Taylor and Francis Online.
In the case of a hypothetical severe accident in a nuclear pressurized water reactor, the formation of radiotoxic RuO4(g) may occur in the reactor containment building, resulting from the interactions of ruthenium oxide deposits with the oxidizing medium induced by air radiolysis. Consequently, this gaseous ruthenium tetroxide may be dispersed into the environment; therefore, the determination of the ruthenium deposits behavior is of primary importance for nuclear safety studies. An experimental study, performed by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), using a gamma irradiator cell (EPICUR facility at IRSN/Cadarache) has been carried out in order to obtain experimental data on these interactions. The results showed that radiolytic oxidation of ruthenium oxide deposits leads to the formation of gaseous ruthenium tetroxide to a significant extent. A comparison between the revolatilized Ru fractions obtained experimentally and those obtained by calculations based on the rate laws modeling ozone irradiation effect, established in previous studies, is presented. The disagreement observed is discussed. It appears that the oxidation resulting from air/steam radiolysis products is enhanced in comparison with pure ozone effect.