ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kwi Seok Ha, Hae Yong Jeong, Young Min Kwon, Yong Bum Lee, Dohee Hahn, James E. Cahalan, Floyd E. Dunn
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 221-231
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4021
Articles are hosted by Taylor and Francis Online.
The Super System Code of the Korea Atomic Energy Research Institute (SSC-K) has been developed for the transient analysis of the Korea Advanced LIquid MEtal Reactor (KALIMER) system. Recently, a detailed three-dimensional (3-D) core thermal-hydraulic model was developed to describe nonuniformities of radial temperature and flow within a subassembly and to decrease the uncertainties in the reactor safety margins during accident situations. The Shutdown Heat Removal Test-17 (SHRT-17) performed in the Experimental Breeder Reactor-II (EBR-II) and the postulated unscrammed events for the KALIMER conceptual design have been analyzed using a code system that has coupled a detailed 3-D core thermal-hydraulic model with SSC-K. The coupled code predicted behaviors for the experimental trends for the protected loss-of-flow SHRT-17. The KALIMER-150 design was adopted for a plant application of the same code system. Three events, unprotected transient overpower (UTOP), unprotected loss of flow (ULOF), and unprotected loss of heat sink (ULOHS) were analyzed, and the simulation results were compared to those obtained using another code system that has coupled the Safety Analysis Section SYStem (SASSYS)-1 code with the same detailed 3-D core thermal-hydraulic model. The results, calculated with SSC-K coupled with the detailed 3-D core thermal-hydraulic model showed good agreement with the calculated results of the SASSYS-1 coupled code system for the UTOP and ULOF; however, some discrepancies were shown in the results for the ULOHS. These were found to have occurred because of a difference of the modeling for the decay heat removal system and primary coolant inventory. Through these analyses, the coupled code system was validated in order to be available for the safety analysis of a liquid-metal reactor (LMR) plant.