ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hyungrae Kim, Yoon Yeong Bae, Hwan Yeol Kim, Jin Ho Song, Bong Hyun Cho
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 119-129
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4013
Articles are hosted by Taylor and Francis Online.
The SuperCritical Water-cooled Reactor (SCWR) is one of the candidates for the fourth-generation nuclear power plant, and it uses light water as a coolant. Heat transfer between a fuel assembly and water may degrade at certain conditions of supercritical pressure flows. Therefore, accurate and reliable estimation of heat transfer coefficients is necessary for the design of the fuel assembly and the reactor core. A series of heat transfer tests has been carried out at a test facility named SPHINX by using carbon dioxide as a stimulant of water. The tests produced heat transfer data of the supercritical pressure flows inside a circular tube of 4.4-mm inside diameter at varying operating pressures, mass fluxes, and wall heat fluxes. The test range of the mass flux was 400 to 1200 kg/m2 s, and the maximum heat flux was 150 kW/m2. The operating pressures were 7.75, 8.12, and 8.85 MPa in the tests. The test results were compared with estimations of the existing correlations for supercritical pressure flows. The comparison showed reasonable agreement between our data and the correlations. However, a rather large departure from the normal heat transfer correlations was observed near pseudocritical temperatures. Besides the comparison of the normal heat transfer coefficients, the onset of heat transfer deterioration was compared between the test cases and two existing criteria. One of the criteria was derived from experiments by using Freon but with a test section of identical geometry while the other criterion was for a flow of carbon dioxide in a larger bore channel than ours. Both criteria showed fair agreement with our experiment. Most test cases with noticeable heat transfer degradation were located in the region of deterioration predicted by the criteria.