ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Naoyuki Kisohara, Takeshi Moribe, Takaaki Sakai
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 103-118
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4012
Articles are hosted by Taylor and Francis Online.
A sodium-heated steam generator (SG) being studied in Japan for a future commercialized fast reactor is a double-wall straight tube type. The SG is large to reduce its manufacturing cost by economies of scale. This paper addresses the multidimensional distributions of the temperature and the flow in the SG. Large heat exchanger components are prone to have nonuniform flow and temperature distributions. These maldistributions cause tubes to have thermal expansion mismatch, which might lead to structural issues such as tube buckling or tube-to-tube-sheet junction failure in straight tube SGs. The temperature profiles in the SG are examined by numerical methods, and flow distribution control devices are optimized to prevent these issues. The calculation model of the SG consists of two parts: a sodium inlet distribution plenum (the inlet plenum) and a heat transfer tube bundle region (the bundle). The flow and temperature distributions in the inlet plenum and the bundle are evaluated by the three-dimensional code FLUENT and the two-dimensional code MSG, respectively. The thermal loads on the tubes are evaluated by the structural code FINAS based on the temperature distributions. These codes have revealed that the sodium flow is distributed uniformly by the flow distributors and that the thermal loads remain within the allowable range for the structural integrity of the tubes and the junctions. An inlet plenum water test and an SG experiment to examine thermal-hydraulic performance are planned. These tests will reveal the flow and temperature distributions in the SG and verify the computer calculation results.