ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Naoyuki Kisohara, Takeshi Moribe, Takaaki Sakai
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 103-118
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4012
Articles are hosted by Taylor and Francis Online.
A sodium-heated steam generator (SG) being studied in Japan for a future commercialized fast reactor is a double-wall straight tube type. The SG is large to reduce its manufacturing cost by economies of scale. This paper addresses the multidimensional distributions of the temperature and the flow in the SG. Large heat exchanger components are prone to have nonuniform flow and temperature distributions. These maldistributions cause tubes to have thermal expansion mismatch, which might lead to structural issues such as tube buckling or tube-to-tube-sheet junction failure in straight tube SGs. The temperature profiles in the SG are examined by numerical methods, and flow distribution control devices are optimized to prevent these issues. The calculation model of the SG consists of two parts: a sodium inlet distribution plenum (the inlet plenum) and a heat transfer tube bundle region (the bundle). The flow and temperature distributions in the inlet plenum and the bundle are evaluated by the three-dimensional code FLUENT and the two-dimensional code MSG, respectively. The thermal loads on the tubes are evaluated by the structural code FINAS based on the temperature distributions. These codes have revealed that the sodium flow is distributed uniformly by the flow distributors and that the thermal loads remain within the allowable range for the structural integrity of the tubes and the junctions. An inlet plenum water test and an SG experiment to examine thermal-hydraulic performance are planned. These tests will reveal the flow and temperature distributions in the SG and verify the computer calculation results.