ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The legacy of Windscale Pile No. 1
The core of Pile No. 1 at Windscale caught fire in the fall of 1957. The incident, rated a level 5, “Accident with Wider Consequences,” by the International Nuclear and Radiological Event Scale (INES), has since inspired nuclear safety culture, risk assessment, accident modeling, and emergency preparedness. Windscale also helped show how important communication and transparency are to gaining trust and public support.
Sigitas Rimkevicius, Eugenijus Uspuras
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 97-102
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4011
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the results of the experimental investigation of the thermal-hydraulic characteristics for two types of test sections: thin annular pebble beds (i.e., spheres dumped in thin annular slots) and pebble beds placed between cylinders. The experimental results of heat transfer from the spheres and from a cylinder, as well as hydraulic drag for both types of test sections, are presented in this paper. The results of the thin annular pebble bed experiments demonstrate that the maximum heat transfer and hydraulic drag is at the annular slot with the relative width K equal to 1.07 and 1.75 of the sphere diameter. The heat transfer in the internal layers at these values of K is equal to the heat transfer in the internal layers of large (unlimited) rhombic packing. The results of the experimental investigation of pebble beds between cylinders demonstrate that the randomly arranged pebble bed is preferable to the regular rhombic structure from the viewpoints of design simplicity, heat transfer from the cylinder, and drag coefficient.