ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Fabrice Bentivoglio, Nicolas Tauveron
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 55-75
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4008
Articles are hosted by Taylor and Francis Online.
In the framework of Generation IV, the Commissariat à l'Energie Atomique studies different concepts of gas-cooled reactors (GCRs). The estimation of thermal-hydraulic performances in steady-state and in transient operations is of high importance for the designer of such systems. These evaluations require efficient and reliable simulation tools capable of modeling the whole reactor, including the core, the core vessel, the piping, the heat exchangers, and the turbomachinery. CATHARE2 is a thermal-hydraulic one-dimensional reference safety code developed and assessed for pressurized water reactors. It has been adapted to deal also with GCR applications. The assessment for these new applications requires cross comparisons with experimental representative data. Thus, CATHARE2 is validated against existing experimental data, in particular, the German power plant Oberhausen II data. Oberhausen II was a 50-MW(electric) direct-cycle helium turbine plant, operated by the German utility Energie Versorgung Oberhausen. This paper presents the plant, with a large emphasis on the helium power conversion unit, the modeling, and the comparison between experimental data and simulation results for both steady-state and transient cases. The agreement between the experimental data and the CATHARE results is quite satisfactory for the analyzed cases.