ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
R. L. Demmer, J. B. Panozzo, R. J. Christensen
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 444-452
Technical Paper | Decontamination/decommissioning | doi.org/10.13182/NT08-A4002
Articles are hosted by Taylor and Francis Online.
The Dresden Nuclear Power Station Unit 1 spent fuel pool (SFP) (Exelon Generation Company) was decommissioned using a new underwater coating process developed in cooperation with Idaho National Laboratory (INL). This was the first time that a commercial nuclear power plant SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost-effective deactivation. The process was pioneered at INL and used to decommission three SFPs with a total combined pool volume of >900 000 gal. INL provided engineering support and shared project plans to successfully initiate the Dresden project.This paper outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. Several specific areas where special equipment was employed are discussed, and a "lessons learned" evaluation is included.