ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Shurong Ding, Yongzhong Huo
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 416-425
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3999
Articles are hosted by Taylor and Francis Online.
A metal-matrix dispersion fuel plate is considered. Taking account of the actual geometry, a special three-dimensional representative volume element is developed according to the particle distributions, which might characterize not only the macro deformation along the thickness but also the micro stress-strain fields. An elastoplastic analysis using the finite element method is carried out for the thermal-mechanical behaviors induced only by the thermal effects. The distributions of the thermal stresses at the fuel particles and the matrix are given, and the effects of the surface heat transfer coefficients, the heat generation rates of the fuel particles, and the degraded conductivities of the fuel particles along with the burnup on the stresses and the size variations of the plate thickness are investigated. The research results indicate that the internal stress distributions are not spherically symmetrical. With increasing surface heat transfer coefficients, the first principal stresses at the particles and the matrix both fall, and the thickness increments decrease. The first principal stresses at the fuel particles and the matrix both grow with increasing heat generation rates, and the thickness variations linearly increase. With decrease of the thermal conductivities of the fuel particles, the first principal stresses at the matrix increase, and the relative stresses at the particles decrease.