ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Shurong Ding, Yongzhong Huo
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 416-425
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3999
Articles are hosted by Taylor and Francis Online.
A metal-matrix dispersion fuel plate is considered. Taking account of the actual geometry, a special three-dimensional representative volume element is developed according to the particle distributions, which might characterize not only the macro deformation along the thickness but also the micro stress-strain fields. An elastoplastic analysis using the finite element method is carried out for the thermal-mechanical behaviors induced only by the thermal effects. The distributions of the thermal stresses at the fuel particles and the matrix are given, and the effects of the surface heat transfer coefficients, the heat generation rates of the fuel particles, and the degraded conductivities of the fuel particles along with the burnup on the stresses and the size variations of the plate thickness are investigated. The research results indicate that the internal stress distributions are not spherically symmetrical. With increasing surface heat transfer coefficients, the first principal stresses at the particles and the matrix both fall, and the thickness increments decrease. The first principal stresses at the fuel particles and the matrix both grow with increasing heat generation rates, and the thickness variations linearly increase. With decrease of the thermal conductivities of the fuel particles, the first principal stresses at the matrix increase, and the relative stresses at the particles decrease.