ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sylvie Delpech, Gérard Picard, Jörgen Finne, Eric Walle, Olivier Conocar, Annabelle Laplace, Jérôme Lacquement
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 373-381
Technical Paper | Molten Salt Chemistry and Technology | doi.org/10.13182/NT08-A3996
Articles are hosted by Taylor and Francis Online.
Pyrochemical separation processes are considered to treat spent nuclear fuel and particularly to separate fission products from actinides. In order to estimate the efficiency and selectivity for various extraction processes based on a molten salt/solvent metal separation technique, we have to know the properties of the elements to be extracted in each solvent, notably their activity coefficients in the two phases. The classical way to measure the activity coefficient of an element in a liquid metal is to use a concentration cell whose the electromotive force is measured. This type of cell involves two electrodes: (a) the element investigated in its pure metallic form and (b) the element solvated in the solvent metal. The electrolyte used for this study is a chloride melt that contains the element under consideration as a solute. In this paper, an effort was made to measure activity coefficients in liquid metals by means of electrochemical techniques rather than a potentiometric technique. The experimental protocol was optimized by measuring the activity coefficient of gadolinium in liquid gallium (solvent metal) (Gd/Ga) at 530°C for several amounts of gadolinium in gallium, and log (Gd/Ga) was determined to be equal to -10.17 (mole fraction scale). Then, the temperature dependence of the activity coefficient was determined in the range of 535 to 630°C. It appears that log (Gd/Ga) varies linearly with the reciprocal value of T, thus following the theoretical variation. The electrochemical method was also performed to determine the activity coefficient of plutonium in liquid gallium at 560°C. The value of log (Pu/Ga) so obtained is equal to -8.04 (mole fraction scale). This value was confirmed using electrochemical and potentiometric measurements with a plutonium-saturated gallium electrode.