ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Philippe M. Bardet, Per F. Peterson
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 344-357
Technical Paper | Molten Salt Chemistry and Technology | doi.org/10.13182/NT163-344
Articles are hosted by Taylor and Francis Online.
Liquid fluoride salts and helium have desirable properties for use as working fluids for high-temperature (500 to 1000°C) heat transport in fission and fusion applications. This paper presents recent progress in the design and analysis of scaled thermal-hydraulic experiments for fluid mechanics and convective heat transfer in liquid salt and helium systems. It presents a category of heat transfer fluids and a category of light mineral oils that can be used for scaled experiments simulating convective heat transfer in liquid salts. By optimally selecting the length, velocity, average temperature, and temperature difference scales of the experiment, it is possible to simultaneously match the Reynolds, Froude, Prandtl, and Grashof numbers in geometrically scaled experiments operating at low-temperature, reduced length, and velocity scales. Mechanical pumping power and heat input are reduced to ~1 to 2% of the prototype power inputs. Helium fluid mechanics and heat transfer likewise can be simulated by nitrogen following the same procedure. The resulting length, velocity, temperature, and power scales for simulating helium are quite similar to those for the liquid salts, and the pressure scale is reduced greatly compared to the prototypical pressure scale. Steady state and transient heat transfer to a steel and graphite structure can be reproduced with moderate distortion using Pyrex and high-thermal-conductivity epoxies, respectively. Thermal radiation heat transfer cannot be reproduced, so the use of these simulant fluids is limited to those cases where radiation heat transport is small compared to convective heat transport, or where corrections for thermal radiation heat transfer can be introduced in models using convective heat transfer data from the simulant fluids. Likewise for helium flows, compressibility effects are not reproduced.