ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
L. Desgranges, M. P. Ferroud-Plattet, R. Alloncle, I. Aubrun, J. M. Untrau, P. Lhuillery
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 252-260
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3985
Articles are hosted by Taylor and Francis Online.
In dry storage conditions, the accidental scenario takes into consideration a defective nuclear fuel rod reacting with the atmosphere. In order to gain information on French nuclear fuel, a new experimental setup named CROCODILE was developed to perform oxidation experiments in hot cells on defective fuel rodlets with controlled temperature and atmosphere. The first test was performed at 623 K in air with a rodlet taken from a four-cycle mixed-oxide fuel rod in which defects were simulated by drilling holes in the cladding. After 139 h of oxidation, significant degradation was observed with the development of radial and axial cracks. At this point, the experiment was stopped and the rodlet was analyzed. The main features observed were (a) a significant strain in the cladding around the cracks, which resulted in the detachment of fuel fragments; (b) no evidence of hydride accumulation in the cladding; and (c) a heterogeneous propagation of the oxidation front in the nuclear ceramic. The influence of the simulated defect is discussed and the use of a round defect is examined.