ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Jan Machacek, Laurent Cantrel, Peter Kluvanek, Marek Liska, Ondrej Gedeon
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 245-251
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3984
Articles are hosted by Taylor and Francis Online.
Behavior of iodine fission product is of prime importance for short-term radiological consequences in a severe accident occurring on a pressurized water nuclear reactor. Iodine speciation in the reactor coolant system is commonly predicted with severe accident simulation software devoted to the transport and deposition of fission products and structural materials, for instance, the SOPHAEROS module of ASTEC. In these calculation tools, chemical equilibrium is assumed to be reached instantaneously whatever the conditions are. However, some thermodynamic data are still uncertain because of lack of experimental data. Quantum-chemical calculations can be appropriate tools to estimate equilibrium constants in a first step and maybe later to determine some kinetic constants for further implementation in such codes to better assess iodine chemical behavior. This paper is an attempt to calculate some equilibrium reactions for relevant reactions that are susceptible to impact iodine chemistry. The accuracy obtained for such calculations depends on the basis set used. Moreover, relativistic effect has to be taken into account for heavy atoms like iodine or cesium to get reliable predictions.