ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Mueller, S. Dickinson, C. de Pascale, N. Girault, L. Herranz, F. De Rosa, G. Henneges, J. Langhans, C. Housiadas, V. Wichers, A. Dehbi, S. Paci, F. Martin-Fuertes, I. Turcu, I. Ivanov, B. Toth, G. Horvath
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 209-227
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3982
Articles are hosted by Taylor and Francis Online.
Analyses of severe accidents in nuclear power plants by using integral codes are necessary in order to develop accident management strategies that prevent such accidents or mitigate their consequences for the environment. The most important requirement for the development of integral codes is to achieve good predictability of a given accident scenario through the understanding and quantification of severe accident phenomena and their underlying physical and chemical processes. In this paper, the progress in modeling the processes related to the radioactive source term, and in particular progress related to the release and transport of fission products in the circuit and containment, is demonstrated by the assessment of integral and detailed codes using the experimental results of the in-pile Phebus fission product tests (FPTs). It is shown that the integral codes are good in predicting both the hydrogen release and the total release of volatile fission products from the bundle.It is also shown that the commonly used fission product transport codes overestimate the deposited aerosol mass in the Phebus steam generator. However, by using an improved model for the thermophoretic aerosol particle deposition, it has been possible to reproduce the aerosol mass deposited in the steam generator more accurately. The containment analyses carried out with both lumped-parameter and multidimensional computational fluid dynamics codes showed that the measured thermal-hydraulic data are accurately reproduced. The aerosol behavior in the containment estimated from the lumped-parameter codes corresponded satisfactorily to the experimental data. The iodine chemistry codes highlighted the substantial role of silver released from the degraded absorber rod (Ag-In-Cd), as it was observed experimentally; however, the temporal dependence of the gaseous iodine concentration in the containment atmosphere was poorly calculated. There are plans to improve the modeling in order to reproduce better the fission product release from the bundle, the fission product transport in the primary circuit duct, and the gas phase chemistry in the containment, with particular emphasis on gaseous iodine species. Further plans include the analysis of Phebus FPT3, which was the last in the series of Phebus tests, with its boron-carbide control rod.