ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Lars Marklund, Anders Wörman, Joel Geier, Eva Simic, Björn Dverstorp
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 165-179
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3979
Articles are hosted by Taylor and Francis Online.
The topographical driving forces for groundwater on different spatial scales in several ways influence the performance of a repository for nuclear waste located at large depth in crystalline bedrock. We show that the relation between local topographical characteristics (topographical steepness and wavelengths) in the area of a repository (kilometer scale) and the large-scale (hundreds of kilometers) surroundings, together with repository depth, are the primary controls of residence time distributions and the discharge pattern of radionuclides released from an underground repository. In addition, the topography affects the groundwater flow at repository depth and, therefore, influences the long-time degradation of the repository. In the areas studied, all located in Sweden, the local topography mainly controls the groundwater flow down to a depth of ~500 m, which is the suggested depth of the Swedish repository. The importance of the large-scale topography increases with depth but even at depth where local-scale topography is dominant, the continental-scale topography affects length and depth of flowpaths as well as groundwater velocities. The impact of large-scale topography is particularly clear in areas where the steepness of local-scale landforms is relatively small. The study also shows that quaternary deposits (bedrock overburden) may have a significant impact on the overall residence times in the underground because of their hydraulic and sorption properties. This effect is further enhanced by the fact that flow paths originating from repository depth generally emerge in topographical lows with relatively deep layers of quaternary deposits. The findings of this study underscore the need to consider multiscale topographical characteristics as well as bedrock overburden in assessments of radiological consequences of underground repositories.