ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. T. Birkholzer, N. Halecky, S. W. Webb, P. F. Peterson, G. S. Bodvarsson
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 147-164
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3978
Articles are hosted by Taylor and Francis Online.
In heated drifts such as those designated for emplacement of radioactive waste at the proposed geologic repository at Yucca Mountain, temperature gradients cause natural-convection processes that may significantly influence the moisture conditions in the drifts and in the surrounding fractured rock. Large-scale convection cells in the heated drifts would provide an effective mechanism for turbulent mixing and axial transport of vapor generated from evaporation of pore water in the nearby formation. As a result, vapor would be transported from the elevated-temperature sections of the drifts into cool end sections (where no waste is emplaced), would condense there, and subsequently would drain into underlying rock units. To study these processes, we have developed a new simulation method that couples existing tools for simulating thermal-hydrological conditions in the fractured formation with a module that approximates turbulent natural convection in heated emplacement drifts. The new method simultaneously handles (a) the flow and energy transport processes in the fractured rock, (b) the flow and energy transport processes in the cavity, and (c) the heat and mass exchange at the rock-cavity interface. An application is presented studying the future thermal-hydrological conditions within and near a representative waste emplacement drift at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages.