ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. Danko, J. Birkholzer, D. Bahrami
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 110-128
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3975
Articles are hosted by Taylor and Francis Online.
A thermal-hydrologic natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rock mass in the proposed Yucca Mountain repository. The multiphysics problem is solved with MULTIFLUX, in which a lumped-parameter computational fluid dynamics (CFD) model is iterated with TOUGH2. The iterative process ensures that consistent boundary conditions are used on the drift wall in both the CFD and the TOUGH2 model-elements. The CFD solution includes natural convection, conduction, and radiation for heat, as well as moisture convection and diffusion for moisture transport with half waste package-scale details in the drift. The TOUGH2 solution for the rock mass is generalized with the use of the Numerical Transport Code Functionalization technique in order to include both mountain-scale heat and moisture transport in the porous and fractured rock, and fine half waste package-scale details at the drift wall. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2-based integrated model are presented.