ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Danko, J. Birkholzer, D. Bahrami
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 110-128
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3975
Articles are hosted by Taylor and Francis Online.
A thermal-hydrologic natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rock mass in the proposed Yucca Mountain repository. The multiphysics problem is solved with MULTIFLUX, in which a lumped-parameter computational fluid dynamics (CFD) model is iterated with TOUGH2. The iterative process ensures that consistent boundary conditions are used on the drift wall in both the CFD and the TOUGH2 model-elements. The CFD solution includes natural convection, conduction, and radiation for heat, as well as moisture convection and diffusion for moisture transport with half waste package-scale details in the drift. The TOUGH2 solution for the rock mass is generalized with the use of the Numerical Transport Code Functionalization technique in order to include both mountain-scale heat and moisture transport in the porous and fractured rock, and fine half waste package-scale details at the drift wall. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2-based integrated model are presented.