ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
George R. Fegan
Nuclear Technology | Volume 34 | Number 2 | July 1977 | Pages 299-305
Technical Paper | Radioisotope | doi.org/10.13182/NT77-A39704
Articles are hosted by Taylor and Francis Online.
The Bateman system of differential equations describes serial radioactive decay. By tracing atoms through the decay chain, one can decompose the original system into a more elementary system. A concise formulation of this elementary system can be given through the use of a transition matrix. The solution to the system can then be derived in matrix form. The simplicity of this latter expression motivated the use of the transition matrix in the development for Portland General Electric of a computer code for activity calculations. The transition matrix approach together with a strategy for minimal storage requirements produced a very efficient code.