ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. A. Krakowski, R. L. Hagenson, G. E. Cort
Nuclear Technology | Volume 34 | Number 2 | July 1977 | Pages 217-241
Technical Paper | Reactor | doi.org/10.13182/NT77-A39699
Articles are hosted by Taylor and Francis Online.
The thermal-mechanical response of the Reference Theta-Pinch Reactor (RTPR) first wall was analyzed. The first wall problems anticipated for a pulsed, high-β fusion power plant can be ameliorated by either alterations in the physics operating point, materials reengineering, or blanket/first wall reconfiguration. Within the latter “configuration” scenario, a two-fold approach has been adopted for the thermal-mechanical portion of the RTPR first wall technology assessment. First, a number of new first wall configurations (bonded or unbonded laminated composites, all-ceramic structures, protective and/or sacrificial “bumpers”) were considered. Second, a more quantitative failure criterion, based on the developing theories of fracture mechanics, was identified. For each first wall configuration, transient heat transfer and thermoelastic stress calculations have been made. Two-dimensional finite element structural analyses have been made for a variety of mechanical boundary conditions. Only the Al2O3/Nb—1 Zr system has been considered. The results of this study indicated a wide range of design solutions to the pulsed thermal stress problem anticipated for the RTPR. The use of first wall bumpers, in particular, results in significant (a factor of ∼10) reduction in first wall thermal stresses, although simply reducing the insulator thickness also leads to acceptable stress levels. The means by which the first wall portion of the RTPR blanket segment is attached has a minor influence on the stress distribution, although more accurate two-dimensional thermal modeling of the first wall yields stresses that may be reduced by 40% of those predicted by the one-dimensional calculations used heretofore. Static fatigue life estimates of both all-ceramic and ceramic-metal first walls are in excess of five years for even the most severe conditions envisaged for the RTPR. Finally, relatively minor changes in the physics operating point were proven to reduce dramatically the RTPR first wall problem.