ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P. Yarsky, Y. Xu, A. Ward, N. Hudson, T. Downar
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 265-283
Technical Paper | doi.org/10.1080/00295450.2016.1273707
Articles are hosted by Taylor and Francis Online.
On November 3, 2008, an unexpected drift of the last three of 177 control rods occurred at the Dresden Unit 3 boiling water reactor. The root cause of the control rod drift was the manner in which the hydraulic control units (HCUs) were isolated during the outage. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) performed a demonstration study of inadvertent control blade drift using RES-sponsored nuclear analysis tools. The smallest margin to recriticality was determined by calculating the control rod worths at each core state using the core simulator PARCS/PATHS and an innovative algorithm to identify the highest worth combination of rods. This study did not try to evaluate any correlation between drifting rods that may occur in a real plant due to the actual physical configuration of the system. The purpose of the analysis was to demonstrate the tools that could be used to analyze the situation if that information is known.
For the current purpose of this demonstration, Edwin Hatch Unit 1 Cycle 3 (H1C3) was selected as the reference core and cycle. Based on the results of these calculations, it was possible to determine the fraction of rod groups that would produce criticality consequences in each of these scenarios. The results confirmed several aspects of conventional thinking, such as the most reactive point being the beginning of the cycle at the coldest conditions. Further, with a single blade drifting out of the core, the analysis results confirm that shutdown margin is maintained. It was found that a small population (about 1%) of drift scenarios with two rods produced criticality consequences according to our best-estimate-plus-uncertainty method, while this fraction increases to about 3.5% for three rods and about 14% for four rods. The results of the study have confirmed the adequacy of the NRC control rod drift analysis methodology; however, the results are not generically applicable and apply only to H1C3.